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Abstract

Linear vibrations of Reissner–Mindlin-type composite plates in the presence of piezoelectric eigen-
strains are studied. Piezoelectric eigenstrains are produced by applying electrical loads to piezoelectric
layers embedded in or attached to substrate layers. The influence of the mechanical field upon the
electric field is taken into account in the modelling, ending up with electro-mechanically coupled field
equations and boundary conditions, which describe the mechanical and the electrical dynamic response of
the plate.
The mechanical displacements are approximated by means of the kinematic hypothesis of Hencky. The

electric potential distribution is assumed to be composed of a superposition of a linear and a parabolic
distribution in the thickness direction. The linear part accounts for the electric potential difference between
the electrodes of the totally electroded piezoelectric layers. The parabolic part is considered in order to take
into account the influence of the mechanical field upon the electric potential by means of the direct
piezoelectric effect. A weak two-dimensional formulation of the three-dimensional field equations is
obtained by utilizing mechanical and electrical variational principles. This formulation is characterized by
resultants of stress and electric displacement. The electro-mechanically coupled behaviour comes into
play by means of the constitutive relations. In case the electric potential difference is not prescribed, it
can be calculated from a relation, which connects the total electric charge and the electric potential
difference to each other. Because this relation is obtained from the Gauss law of electrostatics, requiring
integration with respect to the area of the electrode, non-local constitutive relations for the plate are found.
The non-local constitutive relations bring a new aspect into the theory of plates. An analysis for the
practically interesting one-dimensional case of composite, piezoelectric plates in cylindrical motion
completes the paper.
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1. Introduction

Over the last few decades, piezoelastic materials have become prominent in the fields of
mechatronics, structronic systems and electro-mechanics, see Tani et al. [1] or Tzou [2].
Piezoelectric solids are utilized to realize distributed actuators and sensors for vibration control of
flexible structures, cf., Rao and Sunar [3]. In the high-end technological concept of ‘‘intelligent’’ or
‘‘smart’’ structures, sensors and actuators serve as integrated parts of the structure and are
combined with automatic control systems, such that the structure is capable of reacting to
external disturbances similar to an intelligent being. Frequently, smart structures are realized by
means of thin piezoelastic layers equipped with electrodes mounted at their surfaces. Applying an
electric potential difference or an electric charge at the electrodes, an electric field emerges within
the piezoelectric layer due to the converse piezoelectric effect, generally resulting in deformation
or mechanical stress. The piezoelectric layer thus acts as an actuator, capable of affecting the
mechanical behaviour of the structure very quickly. Conversely, a deformation of the structure
produces an electric field within the piezoelectric layers. This latter direct piezoelectric effect
allows utilizing the layer as a sensor. However, the piezoelectric effects result in a multi-field
coupling between mechanical and electrical fields. It is important for practical problems, e.g., in
the field of active control of structures, to include electro-mechanical coupling into the modelling
in order to obtain an acceptable level of accuracy. In the present paper, piezoelastic vibrations of
shear-deformable plates are studied.
The classical plate theory for thin plates was established by Kirchhoff [4] in 1850. However,

Kirchhoff’s fourth order equations included the well-known boundary condition paradox, a
contradiction between three natural boundary conditions and the possibility of prescribing only
two boundary conditions at a free edge of the plate. This paradox, as well as the development of
sandwich structures, led to the formulation of shear deformation theories of sixth order by
Reissner [5,6], Hencky [7] and Mindlin [8] around 1950. The theory of piezoelastic plates
additionally requires the consideration of the equations governing the quasi-static electric field.
Mindlin [9] and Tiersten [10] presented early contributions on the wave motion of single-layered
piezoelectric plates. Lee [11], Miu [12] and Tauchert [13] developed plate theories assuming the
electric field to be independent from variations of the mechanical field, neglecting the direct
piezoelectric effect. Hence different electric conditions, e.g., electroded or non-electroded layers
are not suitably reflected in the mechanical modelling. To overcome this problem, more recently
electrical equations have been incorporated into thin beam and plate theory by numerous authors,
such as Benjeddou et al. [14], Rogacheva [15], Ling-Hui [16] and Krommer [17,18]. Accounts for
applying these ideas to moderately thick beams and plates have been given by Krommer and
Irschik [19,20]. However, these formulations suffer from the fact that electric boundary conditions
at the plate edge cannot be satisfied.
In order to incorporate more accurately the variation of mechanical fields and electric fields,

numerous theories have been recently developed. Basically, mechanical and electrical fields are
expanded into power series in the thickness direction with terms up to the third order, as in
Tiersten [21], Yang and Batra [22] and Yang [23]. A different approach can be found in Fernandes
and Pouget [24], accounting for thickness variations by means of harmonic functions. Also,
discrete layerwise theories and hybrid or mixed formulations can be widely found in the literature,
for example Tzou and Ye [25], Lee and Saravanos [26] and Mitchell and Reddy [27]. These higher
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order theories and/or discrete layerwise theories and hybrid formulations are typically combined
with finite element formulations. Reviews on modelling of piezoelectric laminates can be found in
Saravanos and Heyliger [28] or Gopinathan et al. [29].
The present paper focuses on a consistent modelling approach for the dynamic behaviour of

moderately thick composite piezoelastic plates, in which the mechanical and electrical responses
are accurately accounted for. In the available literature, linear variations of the electric potential
are widely used, as in Suresh et al. [30]. Hence, non-linear variations can only be achieved by
introducing discrete mathematical layers inside the physical piezoelastic layer. In this paper, a
different approach is considered, in which consistency in context with the first order shear
deformation theory is obtained by a second order approximation for the electric potential in the
thickness direction. Adjusting the approximation to the electric conditions at the electrodes results
in a superposition of a linear variation and a parabolic variation with respect to the thickness of
the piezoelastic layer. Furthermore, as a new aspect in the theory of plates, the present
formulation results in a non-local formulation of the constitutive relations in order to incorporate
the equipotential area condition for electroded layers with an unspecified electric potential
difference.
Tensor calculus in a two-dimensional Euclidean space is used in this paper, where tensors are

printed bold face. The details for notation are found in Bonet and Wood [31].

2. Modelling

Consider a composite plate as shown in Fig. 1. A single point P on the plate in the reference
configuration is characterized by its position vector n in a plane reference surface and by the
normal distance Z from this surface. The plate is composed of N layers, which are assumed
perfectly bonded to each other. Each individual layer may be made of piezoelastic materials; if so,

n

reference surface

C

h

Z 1

Z N - 1

Z N

Z
ξξ

Z 0 Z 1

P0

P

Fig. 1. Geometry of the plate.
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electrodes are mounted to its upper and lower surfaces. The moderately large thickness of the
plate is h and the kth layer is located between Zk�1pZpZk: The typical thickness-to-planar
dimension ratios (h=L) are within 0:1ph=Lp0:3: The reference surface is enclosed within the
curve C; which has a unit normal vector n pointing outwards.

2.1. Kinematic approximations

The displacement of a point ðn;ZÞ is defined by the in-plane displacement vector uðn;ZÞ and by
the out-of-plane deflection wðn;ZÞ: The in-plane displacement vector is approximated by means of
the Hencky–Mindlin kinematic hypothesis [7,8], and the out-of-plane deflection is considered to
be constant with respect to the thickness of the plate

uðn;ZÞ ¼ u0ðnÞ þ ZwðnÞ; wðn;ZÞ ¼ w0ðnÞ: ð1Þ

In Eq. (1), u0ðnÞ; w0ðnÞ and wðnÞ denote the in-plane displacement vector of points of the reference
surface, the out-of-plane deflection of points of the reference surface and the absolute cross-
sectional rotation vector, respectively. In a Cartesian co-ordinate system (X ;Y ), the components
of w are cx and cy; denoting the rotation of the cross-sections perpendicular to the X- and Y-axis.
If the deformation of the plate is considered small, linearized strain can be introduced by means of
a plane strain tensor eðn;ZÞ and a transverse shear strain vector cðnÞ

eðn;ZÞ ¼ eðnÞ þ ZjðnÞ; cðnÞ ¼ rw0ðnÞ þ wðnÞ; ð2Þ

where the reference surface strain tensor eðnÞ and the curvature tensor jðnÞ are defined as

eðnÞ ¼ 1
2
½ru0ðnÞ þ ðru0ðnÞÞ

T�; jðnÞ ¼ 1
2
½rwðnÞ þ ðrwðnÞÞT�: ð3Þ

Inside each individual piezoelastic layer, the electric potential fkðn;ZÞ is approximated by the
superposition of a linear distribution and a parabolic distribution in the Z direction

fkðn;ZÞ ¼ �
Vk

hk
ðZ � ZkÞ þ wkðnÞðZ2 � ZðZk�1 þ ZkÞ þ Zk�1ZkÞ: ð4Þ

Vk is the electric potential difference in the kth layer, hk ¼ Zk�1 � Zk denotes the thickness of the
kth layer and wkðnÞ is the yet unknown in-plane distribution of the electric potential. This
approximation has been used by Krommer and Irschik [32] for beams and by Krommer [33] for
plates with piezoelastic layers with prescribed electric potential difference. In the present paper,
piezoelastic layers, for which Vk is unknown, are treated in addition. Taking into account the
definition of the electric field vector as the negative gradient of the electric potential, the in-plane
electric field vector Ek

0ðn;ZÞ and out-of-plane electric field Ek
z ðn;ZÞ become

Ek
0ðn;ZÞ ¼ �rfkðn;ZÞ ¼ �rwkðnÞðZ2 � ZðZk�1 þ ZkÞ þ Zk�1ZkÞ;

Ek
z ðn;ZÞ ¼ �

@fk

@Z
ðn;ZÞ ¼

Vk

hk
� 2wkðnÞðZ �

1

2
ðZk�1 þ ZkÞÞ: ð5Þ

2.2. Field equations

A generalization of D’Alembert’s principle in the formulation of Lagrange for piezoelastic
bodies is utilized for a reduction of the three-dimensional problem to a two-dimensional plate
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problem Z
V0

r : de dV þ
Z

V0

s 	 dc dV �
XN

k¼1

Z
Vk
0

Dk
0 	 dE

k
0 dV �

XN

k¼1

Z
Vk
0

Dk
z dEk

z dV

¼ �
Z

V0

r0ð.u 	 duþ .w dwÞ dV þ
Z

S0

ðp 	 duþ pz dwÞ dS �
XN

k¼1

Z
Sk
0

ts;k dfk dS: ð6Þ

This variational principle can be found in Nowacki [34]. The volume and surface of the plate in
the reference configuration are V0 and S0; whereas Vk

0 and Sk
0 denote the volume and surface of

the kth layer in the reference configuration. The plane stress tensor and transverse shear stress
vector are denoted as rðn;ZÞ and sðn;ZÞ; respectively. p is a vector with in-plane traction as
components and pz stands for the traction in Z direction. The in-plane electric displacement
vector Dk

0ðn;ZÞ and out-of-plane electric displacement Dk
z ðn;ZÞ have been introduced in Eq. (6)

and ts;k denotes the electric charge density at the surface of the kth layer.
Inserting the kinematical approximations of Section 2.1 in the variational principle of Eq. (6)

and running through a long but simple derivation, the governing equations of the plate are
obtained. These equations characterize the balance of linear momentum and balance of moment
of momentum, as well as conservation of electric charge. In the present two-dimensional
formulation, the following set of partial differential equations and boundary conditions is
obtained:

divNþ %p ¼ P.u0 þ R .w; divM� qþ %pm ¼ R.u0 þ I .w; div qþ %pz ¼ P .w0;

atC : ½ðNnÞ � %n� 	 du0 ¼ 0; ½ðMnÞ � %m� 	 dw ¼ 0; ½ðq 	 nÞ � %q�dw0 ¼ 0;

For each piezoelastic layer : div %%D
k

0 � %Dk
z ¼ 0 at C : %%D

k

0 	 n ¼ 0: ð7Þ

Note that the vertical portions of the piezoelastic layers have been assumed not to be electroded;
see Parkus [35] for the resulting boundary condition. In Eq. (7), the resultants of stress, electric
displacement and surface traction have been introduced. Thus the in-plane force tensor N;
moment tensor M and transverse shear force vector q are defined as

N ¼
XN

k¼1

Z Zk

Zk�1
r dZ; M ¼

XN

k¼1

Z Zk

Zk�1
rZ dZ; q ¼

XN

k¼1

Z Zk

Zk�1
s dZ: ð8Þ

Also from Eq. (7), the in-plane electric displacement second moment vector %%D
k

0 and out-of-plane
electric displacement first moment %Dk

z in the kth layer are

%%D
k

0 ¼
Z Zk

Zk�1
Dk
0ðZ

2 � ZðZk�1 þ ZkÞ þ Zk�1ZkÞ dZ;

%Dk
z ¼ �

Z Zk

Zk�1
2Dk

z ðZ �
1

2
ðZk�1 þ ZkÞÞ dZ: ð9Þ

The surface traction at the vertical portions of the plate results in an external normal force vector
%n; external moment vector %m and external transverse force %q applied to the plate at the contour C:
The surface traction at the upper and lower surface of the plate enters as distributed external in-
plane force vector %p; distributed external moment vector %pm and distributed transverse force %pz:
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Definition of the external loading is

%n ¼
XN

k¼1

Z Zk

Zk�1
pjC dZ; %m ¼

XN

k¼1

Z Zk

Zk�1
pjCZ dZ; %q ¼

XN

k¼1

Z Zk

Zk�1
pzjC dZ;

%p ¼ pjZu þ pjZl ; %pm ¼ pjZuZu þ pjZl Zl ; %pz ¼ pzjZu þ pzjZl ; ð10Þ

where Zu and Zl denote the distance of the upper surface and the lower surface of the plate from
the reference surface, respectively. Finally, linear, coupling and rotatory inertia P; R and I are

ðP;R; IÞ ¼
XN

k¼1

Z Zk

Zk�1
rk
0ð1;Z;Z2Þ dZ ð11Þ

and rk
0 is the mass density of the kth layer in the reference configuration.

2.3. Constitutive relations

Materials of symmetry class 2mm are considered with the polarization in the Z direction, see
Eringen and Maugin [36]. The stress component sZZ is assumed to be negligible. In the small
deformation range, the plane stress tensor and transverse shear stress vector in the kth layer can
be written as

rk ¼ Ck : e � %ekEk
z ; sk ¼ Gkc � %h

k
Ek
0 : ð12Þ

Here Ck is the fourth order tensor of elastic moduli for plane stress and Gk is the second order
tensor of shear moduli. %ek and %h

k
are the second order tensors of piezoelectric moduli. The electric

displacement can be written as

Dk
0 ¼ %h

k
c þ ekEk

0 ; Dk
z ¼ %ek : e þ ZkEk

z ; ð13Þ

where ek denotes the second order in-plane permittivity tensor and Zk is the out-of-plane
permittivity. Eqs. (12) and (13) are inserted into definitions given by Eqs. (8) and (9), resulting in
the following formulation for the in-plane force tensor N; moment tensor M; transverse shear

force vector q; in-plane electric displacement second moment vector %%D
k

0 and out-of-plane electric

displacement first moment %Dk
z :

N

M

~%D%Dz

2
664

3
775 ¼

A : B : ~00
T

B : D : ~#e#e
T

~00 : ~#e#e :
2

#Z

2
6664

3
7775

e

j

~ww

2
64

3
75�

Na

Ma

~00

2
64

3
75 q

~%%D%%D0

" #
¼

S
~#h#h
T

~#h#h
2

#e

2
4

3
5 c

r~ww

" #
: ð14Þ

In Eq. (14), A; B and D are extensional, bending–extension coupling and bending stiffness fourth
order tensors and S is the shear stiffness second order tensor. Definitions are

ðA;B;DÞ ¼
XN

k¼1

Z Zk

Zk�1
Ckð1;Z;Z2Þ dZ; S ¼ K

XN

k¼1

Z Zk

Zk�1
Gk dZ; ð15Þ

where K is the shear correction coefficient, see Reddy [37]. Column matrices, characterized by an
arrow, and square matrices, characterized by a double arrow, have been introduced in Eq. (14).
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These matrices have to be distinguished from the tensor notation used throughout this paper;
hence they are not written in bold face. They have been introduced only in order to account for
each individual piezoelastic layer in a contracted notation. The dimension of these matrices is

equal to the number of piezoelectric layers. Components are either scalars, ~%D%Dz;
2

#Z; ~ww and ~00;

vectors,
~%%D%%D0 andr~ww; or second order tensors,~00; ~#e#e; ~#h#h and

2

#e: Components of the column matrices~#e#e

and ~#h#h are

#e
k ¼ 2

Z Zk

Zk�1
%ekZ Z �

1

2
ðZk�1 þ ZkÞ

� �
dZ;

#h
k
¼

Z Zk

Zk�1

%h
kðZ2 � ZðZk�1 þ ZkÞ þ Zk�1ZkÞ dZ ð16Þ

and the diagonal matrices
2

#Z and
2

#e have the following components:

#Zk ¼ �4
Z Zk

Zk�1
Zk Z �

1

2
ðZk�1 þ ZkÞ

� �2
dZ;

#ek ¼ �
Z Zk

Zk�1
e0kðZ2 � ZðZk�1 þ ZkÞ þ Zk�1ZkÞ2 dZ: ð17Þ

Finally, Na andMa characterize the piezoelectric actuation via the electric potential difference Vk

in the piezoelastic layers. Definitions are

ðNa;MaÞ ¼
XN

k¼1

Z Zk

Zk�1
%ek Vk

hk
ð1;ZÞ dZ: ð18Þ

In case the electric potential difference is prescribed for each piezoelastic layer, the electro-
mechanically coupled initial-boundary-value problem, Eqs. (7) and (14), can be solved. However
Vk need not be prescribed in every layer, and thus must be pre-calculated.
If Vk is not prescribed in the kth layer, the total electric charge Qk at one of the two electrodes is

prescribed. For example, for electrodes that are left open, the total charge has to be constant with
respect to time; hence without any loss of generality, it can be taken as zero. A relation between the
potential difference and the total charge is easily found by utilizing the Gauss law of electrostatics

Qk ¼
I
Hk

Dk 	 dH: ð19Þ

Eq. (19) is a three-dimensional formulation, not suitable for the present plate theory. Practically,
the surface area integral is reduced to an integral over the area of the electrode, rendering the total
charge Qk at the upper electrode, which is identical to the negative total charge at the lower
electrode

Qk ¼
Z

A

Dk
z

��
Zk�1 dA ¼

Z
A

Dk
z

��
Zk dA: ð20Þ

Here, A is the area enclosed by the curve C: Inserting the constitutive relation forDk
z from Eq. (13),

and the constitutive relation for %Dk
z from Eq. (14), into Eq. (20) and utilizing the conservation of
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charge as defined by the last relation of Eq. (7), the following relation is found:

yk ¼ Qk � CkVk ¼
Zk

hk

Z
A

Z Zk

Zk�1

%ek : e
Zk

dZ

" #
dA: ð21Þ

yk denotes the general sensor signal of the layer and Ck is the capacitance of the layer, Ck ¼
ZkA=hk: Taking into account Eq. (21) in the approximation of the electric potential from Eq. (4), a
general formulation is found in the form

fk ¼ �
Vk

hk
ðZ � ZkÞkV ;k þ

Qk

ZkA
ðZ � ZkÞkQ;k

� �

þ
1

A

Z
A

1

hk

Z Zk

Zk�1

%ek : e
Zk

dZ dA

" #
ðZ � ZkÞkQ;k þ wkðZ2 � ZðZk�1 þ ZkÞ þ Zk�1ZkÞ: ð22Þ

In Eq. (22), tracers kV ;k and kQ;k have been introduced in order to characterize piezoelastic layers
with either prescribed electric potential difference Vk (kV ;k ¼ 1) or prescribed total charge Qk

(kQ;k ¼ 1). Note that the electric potential distribution in Eq. (22) automatically satisfies the
equipotential area condition at the location of the electrodes. In case of prescribed electric charge,
this condition can only be satisfied by the present formulation. Eq. (21) additionally is inserted into
Eq. (18), replacing Vk by Qk in case the electric potential difference is not prescribed. After a long
but simple reformulation, the final form of the constitutive relations reads

N

M

~%D%Dz

2
664

3
775 ¼

A : B : ~00
T

B : D : ~#e#e
T

~00 : ~#e#e :
2

#Z

2
6664

3
7775

e

j

~ww

2
64

3
75�

Na;eff

Ma;eff

~00

2
664

3
775þ

a : b : ~00
T

b : d : ~00
T

~00 : ~00 :
2

0

2
6664

3
77751A

Z
A

e

j

~ww

2
64

3
75 dA;

q

~%%D%%D0

" #
¼

S
~#h#h
T

~#h#h
2

#e

2
4

3
5 c

r~ww

" #
: ð23Þ

Comparing Eq. (23) to Eq. (14), it is seen that additional non-local terms have entered the
constitutive relations for the in-plane force tensor N and the moment tensor M. For thin beams
and plates, this formulation has been introduced by Krommer [17,18], where a discussion on the
necessity of using the non-local formulation for the purpose of satisfying the equipotential area
condition is given. The non-local terms relate the average values of the reference surface strain
tensor and of the curvature tensor to the in-plane force tensor and the moment tensor via the so-
called non-local extensional, bending–extension coupling and bending stiffness fourth order
tensors

ða; b; dÞ ¼
XN

k¼1

Z Zk

Zk�1
kQ;k %ek#%ek

Zk
ð1;Z;Z

1

2
ðZk�1 þ ZkÞÞ dZ: ð24Þ

Note that the formulation of Eqs. (23) and (24) is valid only if %ek and Zk do not vary with respect to
the area of the plate. Finally, the effective piezoelectric actuating in-plane force tensor and moment
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tensor, which depend only on either the electric potential difference or total charge, become

ðNa;eff ;Ma;eff Þ ¼
XN

k¼1

Z Zk

Zk�1
%ek kV ;k Vk

hk
þ kQ;k Qk

ZkA

� �
ð1;ZÞ dZ: ð25Þ

Eqs. (7) and (23) complete the electro-mechanically coupled initial-boundary-value problem. In the
context of linear piezoelectricity, this formulation represents a straightforward extension of the
Reissner–Mindlin–plate theory with respect to electro-mechanical coupling.

3. Analysis of plates in cylindrical motion

In this section, symmetrically laminated plates in cylindrical motion are analyzed in detail.
Symmetry is assumed with respect to the lamination scheme as well as with respect to the type of
electric loading. As a consequence of this symmetry, in-plane motion and out-of-plane motion
become de-coupled, R ¼ 0; B ¼ 0; b ¼ 0: For the cylindrical motion of a plate panel, the balance
laws of Eq. (7) and the constitutive relations of Eq. (23) simplify according to

@

@X
nxx þ %px ¼ P .ux;

@

@X
mxx � qx þ %pm ¼ I .cx;

@

@X
qx þ %pz ¼ P .w0;

atX ¼ ð0;LÞ : nxx ¼ %n or ux ¼ 0; mxx ¼ %m or cx ¼ 0; qx ¼ %q or w0 ¼ 0;

For each piezoelastic layer :
@

@X
%%Dk

x � %Dk
z ¼ 0 at X ¼ ð0;LÞ : %%Dk

x ¼ 0; ð26Þ

nxx

mxx

~%D%Dz

2
664

3
775 ¼

A 0 ~00T

0 D ~#e#eT

~00 ~#e#e
2

#Z

2
664

3
775

e

k

~ww

2
64

3
75�

na;eff

ma;eff

~00

2
664

3
775þ

a 0 ~00T

0 d ~00T

~00 ~00
2

0

2
664

3
7751L

Z L

0

e

k

~ww

2
64

3
75 dX ;

qx

~%%D%%Dx

" #
¼

S
~#h#h
T

~#h#h
2

#e

2
4

3
5 g

@

@X
~ww

2
4

3
5: ð27Þ

The cylindrical motion takes place in the (X ;Z)-plane. The extension of the panel in X direction is
L. In Eq. (27), reference surface strain e; curvature k and transverse shear strain g have been
introduced and are defined as

e ¼
@

@X
ux; k ¼

@

@X
cx; g ¼

@

@X
w0 þ cx: ð28Þ

Extensional, bending and transverse shear stiffness A; D and S; non-local extensional and bending
stiffness a and d, piezoelectric parameters #ek and #hk; permittivity parameters #Zk and #ek and
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effective piezoelectric actuating in-plane force and moment are

ðA;DÞ ¼
XN

k¼1

Z Zk

Zk�1
Y kð1;Z2Þ dZ; S ¼ K

XN

k¼1

Z Zk

Zk�1
GkdZ;

ða; dÞ ¼
XN

k¼1

Z Zk

Zk�1
kQ;k %e

k %ek

Zk
ð1;Z

1

2
ðZk�1 þ ZkÞÞ dZ:

#ek ¼
Z Zk

Zk�1
2%ekZðZ �

1

2
ðZk�1 þ ZkÞÞ dZ;

#hk ¼
Z Zk

Zk�1

%hkðZ2 � ZðZk�1 þ ZkÞ þ Zk�1ZkÞ dZ;

#Zk ¼ �4
Z Zk

Zk�1
ZkðZ �

1

2
ðZk�1 þ ZkÞÞ2dZ;

#ek ¼ �
Z Zk

Zk�1
ekðZ2 � ZðZk�1 þ ZkÞ þ Zk�1ZkÞ2 dZ: ð29Þ

ðna;eff ;ma;eff Þ ¼
XN

k¼1

Z Zk

Zk�1
%e
k kV ;kVk

hk
þ kQ;k Qk

ZkL

� �
ð1;ZÞ dZ;

The significance of Young’s modulus Y k; shear modulus Gk; piezoelectric coefficients %ek and %hk

and electric permittivities Zk and ek is found in the appendix.
The analysis of the initial-boundary-value problem defined by Eqs. (26) and (27) is performed

by a transition matrix procedure. The load vector ~ff ðX ; tÞ and the state vector ~zzðX ; tÞ are
introduced in the form

~ff ðX ; tÞ ¼~ff ðX Þeiot

¼ na;eff

A
ðX Þ

ma;eff

D
ðX Þ 0 ~00T � %pxðX Þ � %pmðX Þ � %pzðX Þ

~#e#eTma;eff

D
ðX Þ

� �T
eiot;

~zzðX ; tÞ ¼~zzðX Þeiot

¼ uxðX Þ cxðX Þ w0ðX Þ ~wwTðX Þ nxxðX Þ mxxðX Þ qxðX Þ ~%%D%%D
T

x ðX Þ
h iT

eiot; ð30Þ

where o denotes the driving frequency of the external loading. The following formulation of the
first order system of (6+2n) ordinary differential equations is obtained from Eqs (26) and (27)

@

@X
~zzðX Þ ¼

2

AðoÞ~zzðX Þ þ 2
að~zzðLÞ �~zzð0ÞÞ þ ~ff ðX Þ; ð31Þ

where n is the number of the piezoelastic layers. The non-vanishing components of the
system matrices

2
a and

2

AðoÞ; which are understood as either scalars, column matrices or square
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matrices are

A15 ¼
1

A
; A24 ¼ �

~#e#eT

D
; A26 ¼

1

D
; A32 ¼ �1; A37 ¼

1

%S
; A38 ¼ �

~#h#hT
2

#e�1

%S
;

A47 ¼ �
2

#e�1
~#h#h

S
;

A48 ¼ %#e
2

�1; A51 ¼ �Po2; A62 ¼ �Io2; A67 ¼ 1; A73 ¼ �Po2;

A84 ¼ %#Z
2

; A86 ¼
~#e#e

D
;

a11 ¼ �
1

L

a

A
; a22 ¼ �

1

L

d

D
; a82 ¼ �

~#e#e

L

d

D
ð32Þ

with the new parameters %S ¼ S �~#h#hT
2

#e�1
~#h#h;

2

%#e ¼
2

#e�~#h#h~#h#hTS�1 and
2

%#Z ¼
2

#Z�~#e#e~#e#eTD�1: Applying the
Laplace transformation to Eq. (31), rearranging terms and applying the inverse Laplace
transformation yields the following transition matrix formulation:

~zzðX Þ ¼
2

U0ðX ;oÞ~zzð0Þ þ
2

ULðX ;oÞ~zzðLÞ þ ~%f%f ðX ;oÞ: ð33Þ

The frequency-dependent transition matrices and load vector are defined as
2

U0ðX ;oÞ ¼
2

AðX ;oÞ* ½
2

I � 2
a�;

2

ULðX ;oÞ ¼
2

AðX ;oÞ*
2
a; ~%f%f ðX ;oÞ ¼

2

AðX ;oÞ*~ff ðX Þ; ð34Þ

where * denotes the convolution integral and the matrix
2

AðX ;oÞ is the inverse Laplace
transformation of ½s

2

I �
2

AðoÞ��1; with s denoting the parameter of the Laplace transformation. In
Eq. (33), the state vector at X ¼ ð0;LÞ is required. For classical homogenous support conditions,

one of the components of each of the four conjugate pairs ðux; nxxÞ; ðcx;mxxÞ; ðw0; qxÞ and ð~ww; ~%%D%%DxÞ
vanishes. ð6þ 2nÞ unknowns therefore remain in the state vectors at X ¼ ð0;LÞ: These can be
easily calculated by evaluating the state vector at X ¼ L; which renders ð6þ 2nÞ equations for the
ð6þ 2nÞ unknowns. The present transition matrix formulation can be advantageously utilized for
the analysis of free and forced vibrations.

3.1. Numerical examples

For the numerical analysis, a simple geometry is considered. The extension of the plate panel in
X direction is 1m and the total thickness is 0.1m. Two identical piezoelastic layers are perfectly
bonded to each other, with electrodes at the interface and at the upper and lower sides of the
panel. The electrode at the interface is grounded. At the outer electrodes, electrical loading is
applied skew-symmetric with respect to the reference surface; hence pure bending of the panel is
produced. PZT-5A is used for the piezoelastic layers; the material parameters are given in the
appendix. This geometry ensures the symmetry required for the analysis in Section 3.
Furthermore, the general formulation of Section 3 is dramatically simplified. It is sufficient to
consider only one unknown in-plane distribution of the electric potential w; because it is identical
in the two layers.
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3.1.1. Free vibrations

In order to show the capability of the present theory to accurately account for the electro-
mechanical coupling present in piezoelastic structures, natural frequencies are calculated for
different support conditions. The outer electrodes are either short-circuited, V1 ¼ V2 ¼ 0; or left
open, Q1 ¼ Q2 ¼ 0: The analytic results are compared to electro-mechanically coupled finite
element (FE) calculations, for which the commercially available code Abaqus Version 5.8 is used.
In the FE calculations, plane strain elements in the (X ; Z)-plane of type CPE4E are utilized.
Electrodes that are left open are modelled by stating that the node set, which defines the electrode
has to have a space-wise constant electric potential distribution, thus facilitating a comparison to
the present non-local theory. Furthermore, purely elastic solutions are also presented, with the
purpose of pointing out the influence of electro-mechanical coupling. These solutions neglect the
piezoelectric behaviour. A comparison with analytic solutions for plane strain is omitted, because
homogenous Dirichlet-type electric boundary conditions are considered in these solutions, see
e.g., Heyliger and Brooks [38].
In Table 1, the first six natural frequencies for a hinged–hinged panel are presented. It can be

seen that the absolute values for the analytic solution are significantly smaller then the ones
calculated by Abaqus. However, this behaviour is reflected by the elastic solution (elastic), by the
solution for short-circuited electrodes (closed) and by the solution for electrodes left open (open).
Hence the different assumptions on the state of stress/strain are responsible for this behaviour.
Therefore a comparison has to be performed with respect to the influence of electro-mechanical
coupling. For that sake, ratios between the natural frequencies obtained by the coupled
formulations and the purely elastic ones are plotted in Fig. 2. Fig. 2 shows an excellent agreement
between analytic results and FE calculations. It is also interesting to note that the influence of
different electric conditions is mostly important for the first natural frequency; it is not present for
the even-numbered frequencies and tends to zero for the higher natural frequencies. The non-local
formulation, requiring integration with respect to the span of the panel, explains this behaviour.
Most important, this behaviour is also reflected by the FE calculations, resulting in the conclusion
that it is necessary to use the non-local theory in order to obtain reasonable results for electrodes
that are left open. Fig. 3 shows the mode shapes for the first two eigenmodes, for which
normalization with respect to the cross-sectional rotation has been performed. For the first
eigenmode, the mode shapes for deflection and cross-sectional rotation are different for different
electric conditions, however quite similar to the elastic mode shapes. For the second mode, the

Table 1

Natural frequencies for the hinged–hinged panel (rad s�1)

1st 2nd 3rd 4th 5th 6th

Elastic/FE 864.4 3276.0 6830.9 11,130 15,880 20,891

Elastic/analytic 840.1 3186.6 6650.6 10,844.5 15,481.8 20,376.8

Closed/FE 889.1 3375.5 7056.3 11,534 16,517 21,818

Closed/analytic 863.0 3279.3 6862.6 11,228.1 16,092.4 21,271.9

Open/FE 942.5 3375.5 7096.1 11,534 16,543 21,818

Open/analytic 912.0 3279.3 6900.1 11,228.1 16,118.2 21,271.9
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mode shapes are nearly identical. It is also interesting to note the behaviour of the in-plane
distribution of the electric potential w in the vicinity of the edges, as depicted in Fig. 3c. This
reflects the necessity of satisfying electric boundary conditions in the present theory. In Fig. 3c, an
approximation for the in-plane distribution of the electric potential has additionally been plotted.
This approximation is

w ¼ �
#e

#Z
@c
@X

: ð35Þ

The approximation is quite good, except in the vicinity of the edges, which are located at X ¼
ð0;LÞ: This simplified plate theory can be found in Krommer and Irschik [20]. For more
complicated vibration problems, for which approximate methods have to be used, the eigenmodes
of the coupled problem can be approximated by the ones for the elastic problem, and by
considering Eq. (35) for w: For pointing out more clearly the difference between different electric
conditions, Fig. 4 presents plots of the mode shapes for the electric potential distribution in the
upper layer. Fig. 4a and b show the mode shapes for the first mode; for short-circuited electrodes,
see Fig. 4a, and for electrodes left open, see Fig. 4b. The mode shape for the first mode is
significantly different in the two cases. It can be also seen from Fig. 4b that the equipotential area
condition at the electrodes is satisfied for electrodes left open, a requirement that motivated the
non-local formulation developed in Section 2. For the second mode, the mode shapes are identical
for short-circuited electrodes and for electrodes left open, see Fig. 4c.
Tables 2–4 present the results for the natural frequencies for other types of support conditions.

The corresponding natural frequency ratios are plotted in Figs. 5–7. For the clamped–clamped
panel, see Table 2 and Fig. 5, results for short-circuited electrodes and electrodes left open are
identical. This is no surprise, because all boundary conditions are of the kinematic type. Thus the
non-local terms do not influence the solution. For all types of support conditions, it is seen that
the influence of electro-mechanical coupling increases with increasing natural frequency number.
In contrast, the difference between the electric conditions at the electrodes decreases. This

1

1.02

1.04

1.06

1.08

1.1

1 2 3 4 5 6

na
tu

ra
l f

re
qu

en
cy

 r
at

io

natural  frequency number

Fig. 2. Natural frequency ratio between electro-mechanically coupled natural frequencies and elastic natural

frequencies for the hinged–hinged panel: —K— closed/analytic; —�— closed/FE; —E— open/analytic; —|—

open/FE.
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difference is mostly significant for the first natural frequency, especially for statically determinate
panels. For redundant panels, the difference is not high, and it vanishes for the clamped–clamped
panel.
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Table 2

Natural frequencies for the clamped–clamped panel (rad s�1)

1st 2nd 3rd 4th 5th 6th

Elastic/FE 1856.3 4688.1 8367.5 12,577 17,135 21,924

Elastic/analytic 1796.5 4551.5 8143.1 12,258.9 16,716.6 21,398.5

Closed/FE 1912.5 4844.1 8677.2 13,095 17,914 23,018

Closed/analytic 1849.3 4701.2 8444.0 12,766.2 17,484.3 22,479.5

Open/FE 1912.5 4844.1 8677.2 13,095 17,914 23,018

Open/analytic 1849.3 4701.2 8444.0 12,766.2 17,484.3 22,479.5

Fig. 4. Mode shapes of the electric potential for the hinged–hinged panel: (a) short-circuited electrodes—first mode; (b)

electrodes left open—first mode; (c) short-circuited electrodes and electrodes left open-second mode.

Table 3

Natural frequencies for the clamped–free panel (rad s�1)

1st 2nd 3rd 4th 5th 6th

Elastic/FE 312.4 1854.1 4822.5 8648.4 13,035 17,765

Elastic/analytic 302.3 1798.5 4687.6 8421.4 12,708.6 17,334.8

Closed/FE 321.16 1908.8 4975.0 8947.9 13,532 18,511

Closed/analytic 310.4 1849.6 4832.0 8707.1 13,188.8 18,060.4

Open/FE 335.4 1937.1 4998.6 8970.7 13,552 18,531

Open/analytic 323.8 1875.0 4854.4 8728.6 13,207.7 18,078.1
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Fig. 5. Natural frequency ratio between electro-mechanically coupled natural frequencies and elastic natural

frequencies for the clamped–clamped panel: —K— closed/analytic; —�— closed/FE; —E— open/analytic; —|—
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Fig. 6. Natural frequency ratio between electro-mechanically coupled natural frequencies and elastic natural

frequencies for the clamped-free panel: —K— closed/analytic; —�— closed/FE; —E— open/analytic; —|—

open/FE.

Table 4

Natural frequencies for the clamped–hinged panel (rad s�1)

1st 2nd 3rd 4th 5th 6th

Elastic/FE 1318.0 3977.4 7610.9 11,871 16,523 21,420

Elastic/analytic 1277.8 3864.2 7407.5 11,568.3 16,114.7 20,899.7

Closed/FE 1356.7 4103.6 7877 12,331 17,231 22,430

Closed/analytic 1313.8 3983.5 7662.0 12,012.4 16,803.3 21,888.1

Open/FE 1371.3 4114.5 7886.9 12,338 17,238 22,435

Open/analytic 1326.9 3994.1 7671.0 12,019.8 16,809.5 21,893.2
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3.1.2. Forced vibrations
A piezoelectric moment ma;eff of amount 80:82 Nmm�1; which is produced by either applying

an electric voltage V1 ¼ �V2 ¼ 100 V or by applying a total charge Q1 ¼ �Q2 ¼ 3:46�
10�5 Cm�1; acts on the panel. The dynamic magnification factor jyðoÞ=yðo ¼ 0Þj of the sensor
signal, see Eq. (21), is plotted in Figs. 8 and 9. Additional results obtained by utilizing a decoupled
theory, which neglect the influence of the mechanical deformation on the electric field, are
included in Figs. 8 and 9. In Fig. 8, the dynamic magnification factor for a hinged–hinged panel is
presented in the vicinity of the first and the third natural frequencies. In the vicinity of the second
natural frequencies, no peaks are shown by the dynamic magnification factor because the span-
wise constant distribution of the actuation does not induce vibrations in the even numbered
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Fig. 7. Natural frequency ratio between electro-mechanically coupled natural frequencies and elastic natural

frequencies for the clamped–hinged panel: —K— closed/analytic; —�— closed/FE; —E— open/analytic; —|—

open/FE.
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modes, which are skew-symmetric. Also, the shifting of natural frequencies due to the electro-
mechanical coupling is nicely reflected in Fig. 8. With increasing natural frequency number, this
shifting becomes more important. This behaviour is in agreement with the one discussed in the
previous section on natural frequencies. Fig. 9 finally shows the dynamic magnification factor for
a clamped–hinged panel in the vicinity of the first and second natural frequencies. The behaviour
is similar to the one for the hinged–hinged panel; nevertheless, vibrations in the second mode are
actuated for the clamped–hinged support conditions. Note that the behaviour in the vicinity of the
peaks in Figs. 8 and 9 is due to the discretization in the plots.

4. Conclusion

It was the main intention of this paper to incorporate the influence of electro-mechanical
coupling by means of the direct piezoelectric effect and the converse piezoelectric effect upon the
mechanical and electrical behaviour of Reissner–Mindlin-type composite plates. A theory has
been presented, which can be said to represent a straightforward extension of the Reissner–
Mindlin plate theory with respect to these requirements. Its formal structure is quite similar to the
purely elastic theory and the purely electric theory. The mechanical field equations in terms of
stress resultants and stress couples are identical to the equations valid in elasticity. The electrical
field equations formulated in terms of resultants of the electric displacement vector are also
identical to equations that can be used in electrostatics. Not taking into account the influence of
mechanical fields upon the electric field would lead to the simple description of a capacitor. The
coupled behaviour is included in the constitutive relations only. In these constitutive relations, the
modelling of electroded piezoelectric layers with an unspecified electric potential difference is
incorporated by means of non-local elastic terms. Finally, numerical examples have been
presented, demonstrating the capability of the present theory to account for the electro-
mechanically coupled dynamic behaviour.

10
0

101

10
2

103

1200 1250 1300 1350 1400

D
y
n
am

ic
 m

ag
n
if

ic
at

io
n
 f

ac
to

r

[rad s
-1

]ω

100

101

102

103

3850 3900 3950 4000

D
y
n
am

ic
 m

ag
n
if

ic
at

io
n
 f

ac
to

r

[rad s -1 ]ω(a) (b)

Fig. 9. Dynamic magnification factor for the clamped–hinged panel: (a) vicinity of the first natural frequency; (b)

vicinity of the second natural frequency; —— decoupled; - - - - - - voltage; . . . . . . . charge.

M. Krommer / Journal of Sound and Vibration 263 (2003) 871–891888



Acknowledgements

Support of the author by the MAX-KADE foundation and the Austrian Academy of Sciences
is gratefully acknowledged.

Appendix A. Nomenclature

For a material with the symmetry properties of a hexagonal system of class 6mm, e.g., PZT-5A,
the linearized three-dimensional constitutive relations can be written in technical notations as

s11
s22
s33
s23
s13
s12
D1

D2

D3

2
66666666666666664

3
77777777777777775

¼

Q11 Q12 Q13 0 0 0 0 0 �e31

Q12 Q11 Q13 0 0 0 0 0 �e31

Q13 Q13 Q33 0 0 0 0 0 �e33

0 0 0 Q44 0 0 0 �e15 0

0 0 0 0 Q44 0 �e15 0 0

0 0 0 0 0 Q66 0 0 0

0 0 0 0 e15 0 e11 0 0

0 0 0 e15 0 0 0 e11 0

e31 e31 e33 0 0 0 0 0 e33

2
66666666666666664

3
77777777777777775

e11
e22
e33
g23
g13
g12
E1

E2

E3

2
66666666666666664

3
77777777777777775

;

Q66 ¼
Q11 � Q12

2
:

The (1,2)-plane in such a material is an isotropic plane. For PZT-5A, the values of the material
parameters are:

Elastic moduli: [109�Nm�2]

Q11 ¼ 121; Q12 ¼ 75:4; Q13 ¼ 75:2; Q33 ¼ 111; Q44 ¼ 21:8; Q66 ¼ 22:8:

Piezoelectric moduli: [Cm�2]

e31 ¼ �5:46; e33 ¼ 15:8; e15 ¼ 12:32:

Permittivities: e0 ¼ 8:854� 10�12 As V
�1 m�1

e11 ¼ 1730e0; e33 ¼ 1700e0:

Density: [kgm�3]

r ¼ 7750:

The material parameters of Eq. (29) are calculated from the above as

Y ¼ Q11 �
Q13Q13

Q33
; G ¼ Q44; %e ¼ e31 �

e33Q13

Q33
; %h ¼ e15; Z ¼ e33 þ

e33e33

Q33
; e ¼ e11:
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